# ISRCartoGIS 2025 Analyzing Spatial Data with R

#### Micha Silver and Arnon Karnieli

Ben Gurion University, Sde Boker

18/09/2025



## Acquiring Remote Sensing Spatial Data

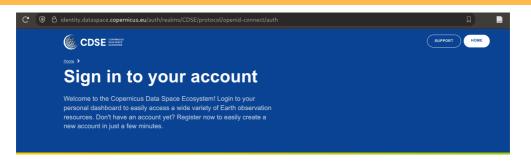


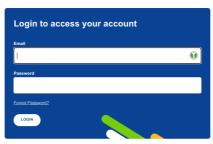
- Browse and download;
  - ► Manual search;
  - ▶ By date, area of interest, satellite mission, cloud cover;
  - ► Download one by one, or collect in "basket";
  - ► Portals for several remote sensing suppliers.

## Acquiring Remote Sensing Spatial Data



- Browse and download;
  - ► Manual search;
  - ▶ By date, area of interest, satellite mission, cloud cover;
  - ▶ Download one by one, or collect in "basket";
  - ► Portals for several remote sensing suppliers.
- STAC web service;
  - ▶ Spatial Temporal Asset Catalog (STAC);
  - Manual search;
  - ► More fine grained search;
  - Allows for scripted download;
  - ► Portals for several remote sensing suppliers.


## Acquiring Remote Sensing Spatial Data




- Browse and download;
  - Manual search;
  - ▶ By date, area of interest, satellite mission, cloud cover;
  - ▶ Download one by one, or collect in "basket";
  - ► Portals for several remote sensing suppliers.
- STAC web service;
  - ▶ Spatial Temporal Asset Catalog (STAC);
  - Manual search;
  - More fine grained search;
  - Allows for scripted download;
  - ► Portals for several remote sensing suppliers.
- Scripted Interface with API
  - Most flexible;
  - Processing "in the cloud";
  - Automated time series;
  - Reproducible.

#### Browse and Download

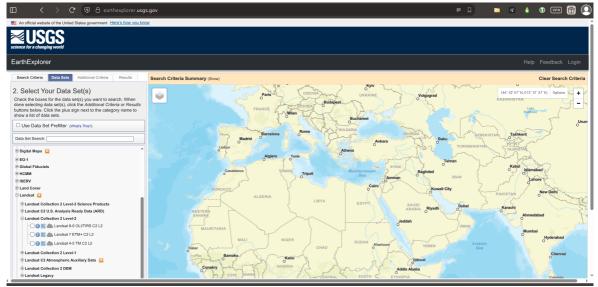






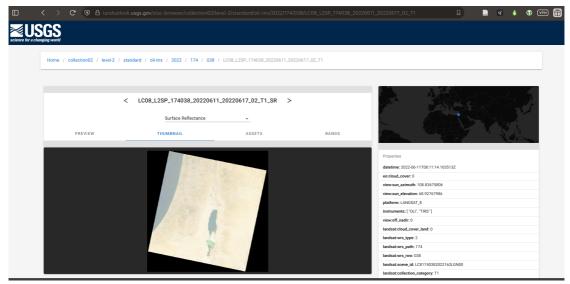
## Register and create an account for free in 60 seconds

- Access a variety of Earth observation data
- Manage your personal settings
- Follow your credits and orders
- REGISTER


#### Browse and Download






#### Browse and Download

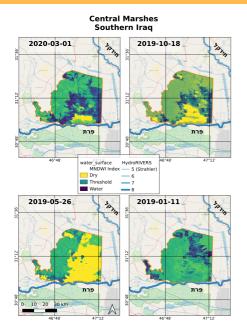





#### STAC Browser






#### STAC Browser





## Shortcomings of "Browse and Download"





#### Research requires:

- long time span of images;
- one or more calculated indices;
- comparing multiple study areas;
- reproducible procedure.

## Why R





- Broad collection of R-spatial packages;
- Ecology (dismo, landscapemetrics and other packages);
- Point pattern analysis (spatstat package);
- Spatial statistics (gstat and many others);
- Cartography and Visualization (leaflet, ggmap, tmap);

# Why R





- Broad collection of R-spatial packages;
- Ecology (dismo, landscapemetrics and other packages);
- Point pattern analysis (spatstat package);
- Spatial statistics (gstat and many others);
- Cartography and Visualization (leaflet, ggmap, tmap);
- Machine Learning (mlr3, caret etc.);
- Spatial analysis incorporated into overall work flow;
- Support;
- Reproducible.

#### Resources



- RSpatial: https://rspatial.org
- Geocompr (online book): https://r.geocompx.org
- R-Spatial (online book): https://r-spatial.org/book/
- CRAN spatial task view: https://cran.r-project.org/web/views/Spatial.html
- R-SIG-Geo (maillist): https://stat.ethz.ch/mailman/listinfo/R-SIG-Geo/

#### General spatial analysis packages



- Spatial packages: terra, sf, stars;
- Cartography and Visualization: ggplot2, ggmap, leaflet, tmap;
- Statistics: dplyr, stats, tidyr;

Installation of basic spatial packages:

```
install.packages(c("terra", "sf", "dplyr",
    "remotes", "ggplot2", "leaflet"), dependencies = TRUE)
```

Installation of packages specifically for remote sensing:

```
install.packages(c("sits", "CDSE", "RStoolbox"), dependencies = TRUE)
devtools::install_github("spatialstatisticsupna/rsat",
   build_vignettes=TRUE)
```

## CDSE package



- Interface to Copernicus DataSpace Ecosystem<sup>a</sup>;
- Requires registration, and creating authentication token (no cost);

CO'S

ahttps://dataspace.copernicus.eu

## CDSE package



- Interface to Copernicus DataSpace Ecosystem<sup>a</sup>;
- Requires registration, and creating authentication token (no cost);
- Search, filter, crop to study area, prepare indices, and download results;
- Most of the work "in the cloud";



ahttps://dataspace.copernicus.eu

### CDSE package, sample code



```
library(CDSE)
tok <- GetOAuthToken(id = xxxxxxxxxx, secret = yyyyyyyyy)
img list <- SearchCatalog(aoi,  # Study Area</pre>
  from = "2019-01-01,
                        # from/to dates
 to = "2023-12-31",
  collection = "sentinel-2-12a", # Sentinel-2 collection,
 token = tok)
                                 # Auth token
rast_list <- lapply(img_list, function(i) {</pre>
 r1 <- GetImage(aoi = aoi, # Area of Interest
    time range = as.Date(i$acquisitionDate), #image acquisiton date
    script = "MNDWI_masked.js", # javascript to prepare index
    collection = "sentinel-2-12a", # Sentinel-2 collection
    format = "image/tiff",  # Output format
    token = tok)
                             # Auth token
  return(r1) })
```

#### sits package



- "Satellite Image Time Series Analysis";
- Interface to multiple data source, using STAC protocol:
- Amazon Web Service (AWS) requires fee;
  - ► Microsoft Planetary Computer (MPC) no cost;
  - ▶ Digital Earth Africa (DEAFRICA);
  - ► Harmonized Landsat Sentinel (HLS) open, high temporal resolution;
  - ▶ others...



#### sits package



- "Satellite Image Time Series Analysis";
- Interface to multiple data source, using STAC protocol:
- Amazon Web Service (AWS) requires fee;
  - ▶ Microsoft Planetary Computer (MPC) no cost;
  - Digital Earth Africa (DEAFRICA);
  - ► Harmonized Landsat Sentinel (HLS) open, high temporal resolution;
  - ▶ others...
- Search, crop to study area, and download results;
- Regularize time series;
- Landcover classification.



#### sits package sample code



```
library(sits)
sits_list_collections()
img_list <- sits_cube(</pre>
 source = "MPC", # Microsoft Planetary Computer
 collection = "LANDSAT-C2-L2",
 bands = c("RED", "NIRO8"),
 roi = roi, # Region of interest
 start date = "2010-01-01", end date = "2025-01-01")
local cube <- sits cube copy(img list, output dir)</pre>
reg_cube <- sits_regularize(local_cube,</pre>
 roi = roi, # Study area
 period = "P1M", # by month
 output_dir = output_dir)
```

#### rstac package



- Generic interface to any STAC compliant data source protocol;
- List of STAC compliant servers: https://stacindex.org;



#### rstac package



- Generic interface to any STAC compliant data source protocol;
- List of STAC compliant servers: https://stacindex.org;
- Understand the hierarchy:
  - ① Catalog
  - Collection (products)
  - Asset/Item (raster file, raster stack, or single band)
- Asset URL can be used with GDAL virtual file: vsicurl;
- Enables preprocessing, cropping, resampling...;
- Download only finished product.



#### rstac package, sample code



```
library(rstac)
stac_source <- stac("https://planetarycomputer.microsoft.com/api/</pre>
 stac/v1")
all collections <- collections(stac source)
stac query <- stac search(q = stac source,
 collections = "usgs-lcmap-conus-v13", # USGS Landcover
 bbox = aoi_bbox, # Study area
 datetime = "2021-01-01/2021-12-31")
assets_download(stac_query,
                                # One available asset
 "lcpri",
 output_dir = output_dir)
```

#### RStoolbox package



- Requires downloading in advance;
- "Swiss army knife" for remote sensing;



#### RStoolbox package



- Requires downloading in advance;
- "Swiss army knife" for remote sensing;
- Several spatial analysis algorithms:
  - ► Calculates any of several dozen spectral indices;
  - ► Pan-sharpening;
  - Cloud masking;
  - Image classification, (both supervised and unsupervised);
  - ► Histogram matching.



#### RSToolbox, sample code



```
library(RStoolbox)
lsat <- stackMeta(mtlFile) # Read all metadata from MTL file</pre>
# Supervised classification
# Using digitized polygons of classes in "train" features
sc <- superClass(lsat, trainData = train,</pre>
  responseCol = "class", model = "rf", # Random Forest classifier
  tuneLength = 1, trainPartition = 0.7)
# plotting:
r <- as.factor(sc$map)
levels(r) <- data.frame(ID = 1:4,</pre>
  class_supervised = levels(train$class)) # Classes from train data
ggR(r,
                               # ggR function from RStoolbox
  geom_raster = T, forceCat = T) +
  scale fill manual (
    values = c("yellow", "sandybrown", "darkgreen", "blue"))
                                                                      16 / 17
```

#### **Thanks**





Thanks,
Questions?